153 research outputs found

    HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting

    Get PDF
    Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on dictio-nary matching to map the temporal MRF signals to quantitative tissue parameters. Such approaches suffer from inherent discretization errors, as well as high computational complexity as the dictionary size grows. To alleviate these issues, we propose a HYbrid Deep magnetic ResonAnce fingerprinting approach, referred to as HYDRA. Methods: HYDRA involves two stages: a model-based signature restoration phase and a learning-based parameter restoration phase. Signal restoration is implemented using low-rank based de-aliasing techniques while parameter restoration is performed using a deep nonlocal residual convolutional neural network. The designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. In test mode, it takes a temporal MRF signal as input and produces the corresponding tissue parameters. Results: We validated our approach on both synthetic data and anatomical data generated from a healthy subject. The results demonstrate that, in contrast to conventional dictionary-matching based MRF techniques, our approach significantly improves inference speed by eliminating the time-consuming dictionary matching operation, and alleviates discretization errors by outputting continuous-valued parameters. We further avoid the need to store a large dictionary, thus reducing memory requirements. Conclusions: Our approach demonstrates advantages in terms of inference speed, accuracy and storage requirements over competing MRF method

    Hardware-Limited Task-Based Quantization

    Get PDF
    Quantization plays a critical role in digital signal processing systems. Quantizers are typically designed to obtain an accurate digital representation of the input signal, operating independently of the system task, and are commonly implemented using serial scalar analog-to-digital converters (ADCs). In this work, we study hardware-limited task-based quantization, where a system utilizing a serial scalar ADC is designed to provide a suitable representation in order to allow the recovery of a parameter vector underlying the input signal. We propose hardware-limited task-based quantization systems for a fixed and finite quantization resolution, and characterize their achievable distortion. We then apply the analysis to the practical setups of channel estimation and eigen-spectrum recovery from quantized measurements. Our results illustrate that properly designed hardware-limited systems can approach the optimal performance achievable with vector quantizers, and that by taking the underlying task into account, the quantization error can be made negligible with a relatively small number of bits

    Task-Based Quantization for Massive MIMO Channel Estimation

    Get PDF
    Massive multiple-input multiple-output (MIMO) systems are the focus of increasing research attention. In such setups, there is an urgent need to utilize simple low-resolution quantizers, due to power and memory constraints. In this work we study massive MIMO channel estimation with quantized measurements, when the quantization system is designed to minimize the channel estimation error, as opposed to the quantization distortion. We first consider vector quantization, and characterize the minimal error achievable. Next, we focus on practical systems utilizing scalar uniform quantizers, and design the analog and digital processing as well as the quantization dynamic range to optimize the channel estimation accuracy. Our results demonstrate that the resulting massive MIMO system which utilizes low-resolution scalar quantizers can approach the minimal estimation error dictated by ratedistortion theory, achievable using vector quantizers

    Magnetic Resonance Fingerprinting Using a Residual Convolutional Neural Network

    Get PDF
    Conventional dictionary matching based MR Fingerprinting (MRF) reconstruction approaches suffer from time-consuming operations that map temporal MRF signals to quantitative tissue parameters. In this paper, we design a 1-D residual convolutional neural network to perform the signature-to-parameter mapping in order to improve inference speed and accuracy. In particular, a 1-D convolutional neural network with shortcuts, a.k.a skip connections, for residual learning is developed using a TensorFlow platform. To avoid the requirement for a large amount of MRF data, the designed network is trained on synthesized MRF data simulated with the Bloch equations and fast imaging with steady state precession (FISP) sequences. The proposed approach was validated on both synthetic data and phantom data generated from a healthy subject. The reconstruction performance demonstrates a significantly improved speed - only 1.6s for reconstructing a pair of T1/T2 maps of size 128 Ă— 128 - 50Ă— faster than the original dictionary matching based method. The better performance was also confirmed by improved signal to noise ratio (SNR) and reduced root mean square error (RMSE). Furthermore, it is more compact to store a network instead of a large dictionary

    Learning-based reconstruction of FRI signals

    Get PDF
    Finite Rate of Innovation (FRI) sampling theory enables reconstruction of classes of continuous non-bandlimited signals that have a small number of free parameters from their low-rate discrete samples. This task is often translated into a spectral estimation problem that is solved using methods involving estimating signal subspaces, which tend to break down at a certain peak signal-to-noise ratio (PSNR). To avoid this breakdown, we consider alternative approaches that make use of information from labelled data. We propose two model-based learning methods, including deep unfolding the denoising process in spectral estimation, and constructing an encoder-decoder deep neural network that models the acquisition process. Simulation results of both learning algorithms indicate significant improvements of the breakdown PSNR over classical subspace-based methods. While the deep unfolded network achieves similar performance as the classical FRI techniques and outperforms the encoder-decoder network in the low noise regimes, the latter allows to reconstruct the FRI signal even when the sampling kernel is unknown. We also achieve competitive results in detecting pulses from in vivo calcium imaging data in terms of true positive and false positive rate while providing more precise estimations

    Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming

    Get PDF
    In this paper, we propose multi-input multi-output (MIMO) beamforming designs towards joint radar sensing and multi-user communications. We employ the Cramr-Rao bound (CRB) as a performance metric of target estimation, under both point and extended target scenarios. We then propose minimizing the CRB of radar sensing while guaranteeing a pre-defined level of signal-to-interference-plus-noise ratio (SINR) for each communication user. For the single-user scenario, we derive a closed form for the optimal solution for both cases of point and extended targets. For the multi-user scenario, we show that both problems can be relaxed into semidefinite programming by using the semidefinite relaxation approach, and prove that the global optimum can always be obtained. Finally, we demonstrate numerically that the globally optimal solutions are reachable via the proposed methods, which provide significant gains in target estimation performance over state-of-the-art benchmarks

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    Rate-distortion trade-offs in acquisition of signal parameters

    Get PDF
    We consider problems where one wishes to represent a parameter associated with a signal source - subject to a certain rate and distortion - based on the observation of a number of realizations of the source signal. By reducing these indirect vector quantization problems to a standard vector quantization one, we provide a bound to the fundamental interplay between the rate and distortion in the large-rate setting. We specialize this characterization to two particular quantization scenarios: i) the representation of the mean of a multivariate Gaussian source; and ii) the representation of the eigen-spectrum of a multivariate Gaussian source. Numerical results compare our quantization approach to an approach where one recovers the parameters from the representation of the source signals itself: in addition to revealing that the characterization is sharp in the large-rate setting, the results also show that our approach offers considerable gains

    Coupled Dictionary Learning for Multi-contrast MRI Reconstruction

    Get PDF
    Magnetic resonance (MR) imaging tasks often involve multiple contrasts, such as T1-weighted, T2-weighted and Fluid-attenuated inversion recovery (FLAIR) data. These contrasts capture information associated with the same underlying anatomy and thus exhibit similarities in either structure level or gray level. In this paper, we propose a Coupled Dictionary Learning based multi-contrast MRI reconstruction (CDLMRI) approach to leverage the dependency correlation between different contrasts for guided or joint reconstruction from their under-sampled k-space data. Our approach iterates between three stages: coupled dictionary learning, coupled sparse denoising, and enforcing k-space consistency. The first stage learns a set of dictionaries that not only are adaptive to the contrasts, but also capture correlations among multiple contrasts in a sparse transform domain. By capitalizing on the learned dictionaries, the second stage performs coupled sparse coding to remove the aliasing and noise in the corrupted contrasts. The third stage enforces consistency between the denoised contrasts and the measurements in the k-space domain. Numerical experiments, consisting of retrospective under-sampling of various MRI contrasts with a variety of sampling schemes, demonstrate that CDLMRI is capable of capturing structural dependencies between different contrasts. The learned priors indicate notable advantages in multi-contrast MR imaging and promising applications in quantitative MR imaging such as MR fingerprinting

    Sparsity and cosparsity for audio declipping: a flexible non-convex approach

    Get PDF
    This work investigates the empirical performance of the sparse synthesis versus sparse analysis regularization for the ill-posed inverse problem of audio declipping. We develop a versatile non-convex heuristics which can be readily used with both data models. Based on this algorithm, we report that, in most cases, the two models perform almost similarly in terms of signal enhancement. However, the analysis version is shown to be amenable for real time audio processing, when certain analysis operators are considered. Both versions outperform state-of-the-art methods in the field, especially for the severely saturated signals
    • …
    corecore